Quadratic Formula

<u>**Theorem**</u> Suppose a, b, and c are any real numbers, with the exception that $a \neq 0$. The quadratic equation:

$$a x^2 + b x + c = 0$$

has the two solutions:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example Solve the following quadratic equation:

$$x^2 - 4x - 7 = 0$$

Here a = 1, b = -4 and c = -7. The quadratic formula says that the two solutions to this equation are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-7)}}{2(1)}$$

$$= \frac{4 \pm \sqrt{16 + 28}}{2} = \frac{4}{2} \pm \frac{\sqrt{44}}{2} = \frac{4}{2} \pm \frac{\sqrt{4 \cdot 11}}{2}$$

$$=2\pm\frac{\sqrt{4}\sqrt{11}}{2}=2\pm\frac{2\sqrt{11}}{2}=2\pm\sqrt{11}$$

so that $x = 2 \pm \sqrt{11}$ satisfies the given equation.

Mnemonic Device

Here's a story that makes it easy to remember your quadratic formula:

Once there was a bad boy (-b), who was kind of wishy-washy (\pm) about attending a radical party $\sqrt{}$ because the boy was kind of square (b^2) . When he arrived he was kind of nervous, or negative (-) about meeting these four awesome chicks (4ac) it was ALL OVER at 2 antemeridian (2a)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$